
costola 20mm

Studia graeco-arabica

With the support of the European Research Council

St
ud

ia
gr

ae
co

-a
ra

bi
ca

3

2013

ISSN 2239-012X

Studia graeco-arabica
The Journal of the Project

Greek into Arabic
Philosophical Concepts and Linguistic Bridges

 European Research Council Advanced Grant 249431

3

2013

Published by
ERC Greek into Arabic

Philosophical Concepts and Linguistic Bridges European Research Council Advanced Grant 249431

Advisors
Mohammad Ali Amir Moezzi, École Pratique des Hautes Études, Paris
Carmela Ba!oni, Istituto Universitario Orientale, Napoli
Sebastian Brock, Oriental Institute, Oxford
Charles Burnett, "e Warburg Institute, London
Hans Daiber, Johann Wolfgang Goethe-Universität Frankfurt a. M.
Cristina D’Ancona, Università di Pisa
"érèse-Anne Druart, "e Catholic University of America, Washington
Gerhard Endress, Ruhr-Universität Bochum
Richard Goulet, Centre National de la Recherche Scienti$que, Paris
Steven Harvey, Bar-Ilan University, Jerusalem
Henri Hugonnard-Roche, École Pratique des Hautes Études, Paris
Remke Kruk, Universiteit Leiden
Concetta Luna, Scuola Normale Superiore, Pisa
Alain-Philippe Segonds (†)
Richard C. Taylor, Marquette University, Milwaukee (WI)

Sta%
Elisa Coda
Cristina D’Ancona
Cleophea Ferrari
Gloria Giacomelli
Cecilia Martini Bonadeo

Web site: http://www.greekintoarabic.eu
Service Provider: Università di Pisa, Area Serra - Servizi di Rete di Ateneo

ISSN 2239-012X

© Copyright 2013 by the ERC project Greek into Arabic (Advanced Grant 249431).
Studia graeco-arabica cannot be held responsible for the scienti$c opinions of the authors publishing in it.

All rights reserved. No part of this publication may be reproduced, translated, transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written permission from the Publisher.
Registered at the law court of Pisa, 18/12, November 23, 2012.
Editor in chief Cristina D’Ancona.

Cover
Mašhad, Kitāb āna-i Āsitān-i Quds-i Ra awī 300, f. 1v
Paris, Bibliothèque Nationale de France, grec 1853, f. 186v

"e Publisher remains at the disposal of the rightholders, and is ready to make up for unintentional omissions.

Publisher and Graphic Design

Via A. Gherardesca
56121 Ospedaletto (Pisa) - Italy

Printing
Industrie Gra$che Pacini

Studia graeco-arabica

3

2013

G2A Web Application

Istituto di Linguistica Computazionale “Antonio Zampolli”

Consiglio Nazionale delle Ricerche - Area della Ricerca di Pisa

Studia graeco-arabica 3 / 2013

Computational contributions for Arabic language processing

Part I. The automatic morphologic analysis of Arabic texts

Ouafae Nahli

Abstract
The aim of this paper is to describe our work on the project “Greek into Arabic”, in which we faced some
problems of ambiguity inherent to the Arabic language. Di!culties arose in the various stages of automatic
processing of the Arabic version of Plotinus, the text which lies at the core of our project. Part I highlights the
needs that led us to update the morphological engine AraMorph in order to optimize its morpho-syntactic
analysis. Even if the engine has been optimized, a digital lexical source for better use of the system is still lacking.
Part II presents a methodology exploiting the internal structure of the Arabic lexicographic encyclopaedia
Lisān al-ʿarab, which allows automatic extraction of the roots and derived lemmas. The outcome of this work
is a useful resource for morphological analysis of Arabic, either in its own right, or to enrich already existing
resources.

1. Introduction
The tools for linguistic analysis build an advanced representation of the information content of the

documents through text processing at di"erent levels of complexity: morphological analysis, syntactical
analysis, semantic interpretation and disambiguation. The main initial problem for computational
analysis of a text is to establish the criteria aimed at identifying its basic unit, which is the word.

Words must be identi#ed or tokenized automatically by a software for the processing of natural
language. Tokenization is relatively simple for languages, like English, which use spaces to delimit
words (space-delimited writing). In this case, the token can be de#ned simply as “any sequence of
characters delimited by spaces”, even though this de#nition leaves room for many exceptions. On the
contrary, for languages with a continuous orthographic system (unsegmented writing) tokenization
requires extremely complex algorithms.1 The Arabic language is characterized by a writing system
that lies between the two types. In fact, some graphic words in Arabic correspond to minimum
linguistic units delimited by blank spaces. Other words result from a sequence of lexical units. Some
functional words can be proclitic (e.g., conjunctions, prepositions, de#nite article) or enclitic (e.g.,
nominative pronouns or accusative/genitive pronouns). Therefore, tokenization requires additional
segmentation based on morphological rules of compatibility, which permit the recognition of the
various agglutinated morphemes.

1 Ch.D. Manning - H. Schütze (eds.), Foundations of Statistical Natural Language Processing, The MIT Press, Cambridge
MA 1999, p. 125-9: “Normally, an early step of processing is to divide the input text into units called tokens where each is
either a word or something else like a number or a punctuation mark. This process is referred to as tokenization (…) Many
languages do not put spaces in between words at all, and so the basic word division algorithm of breaking on whitespace is of
no use at all. Such languages include major East-Asian languages/scripts, such as Chinese, Japanese, and Thai. Ancient Greek
was also written by ancient Greeks without word spaces. Spaces were introduced (together with accent marks, etc.) by those
who came afterwards. In such languages, word segmentation is a much more major and challenging task”.

© Copyright 2013 Greek into Arabic (ERC ADG 249431)

Studia graeco-arabica 3 / 2013

196 Ouafae Nahli

2. Orthographic words in Arabic
The orthographic unit may represent a basic unit called the “minimum word”, which corresponds

to a lemma or to its in$ected form, obtained as the result of a change in the internal vowels, and of
the addition (or lack) of a pre#x and/or su!x. Simple or compound clitics can be added to this
minimum unit to obtain a ‘maximum word’.2 Table 1 provides an example of ‘maximum word’:

 /wabimaktabātihim/

Tab. 1. Example of the maximum word and its composition: /wabimaktabātihim/.

Maximum Word

Composed Proclitic Minimum Word Enclitic
Proclitic 1 Proclitic 2 Stem Suffix 1 Suffix 2 Enclitic

wa bi maktab āt i him
Conjunction Preposition place of the action /

kataba/ “to write”
Feminine

plural
Genitive

case
Genitive
pronoun

and in libraries “of ” them
“and in their libraries”

This ‘maximum word’ is an example to discuss the problems of tokenization in the Arabic language.
There are in fact several levels of tokenization, depending on the depth of the linguistic analysis involved.
At a #rst level, tokenization is primarily based on blank space and punctuation marks3 to delimit the
boundaries of the orthographic word (‘key tokens’). The main token can be a minimum or a maximum
word. After tokenization, which divides the orthographic words according to spaces and punctuation,
the maximum word should be further divided into sub-tokens, whereby clitics, a!xes and the stem
are separated. At this stage, a software designed to extract tokens requires further morphological and
syntactic information. There are, in fact, several rules that govern the combination of words with a!xes
and clitics. Therefore, tokenization is tightly connected with morphologic analysis4 to:

In addition to an algorithm that enables tokenization, the software needs:
5

2 J. Dichy, “Pour une lexicomatique de l’arabe: l’unité lexicale simple et l’inventaire #ni des spéci#cateurs du domaine
du mot”, Meta: Journal des traducteurs / Meta: Translators’ Journal 42 (1997), p. 291-306 (URI: http://id.erudit.org/
iderudit/002564ar - DOI: 10.7202/002564ar).

3 The token can also be a punctuation mark, or a multiword expression. Numbers are also considered as tokens. A
list of all the punctuation marks and numbers must be reported in the system to delimit the tokens in the main text. See
M.A. Attia, “Arabic Tokenization System”, Proceedings of the 2007 Workshop on Computational Approaches to Semitic
Languages, Common Issues and Resources, The Association for Computational Linguistics, Stroudsburg PA 2007, p. 65-72.

4 Attia, “Arabic Tokenization System”, p. 65-72.
5 R.L. Trask, A Dictionary of Grammatical Terms in Linguistics, Routledge, London 1993, p. 159, de#nes the lexicon

as: “That part of the grammar of a language which includes the lexical entries for all the words and/or morphemes in the
language and which may also include various other information, depending on the particular theory of grammar”.

Studia graeco-arabica 3 / 2013

 Computational contributions for Arabic language processing 197

– pre#x/stem/su!xe: for example, imperfective pre#xes are compatible with verbal stem
tanwīn

with the tanwīn
– proclitic/minimum word/enclitic: for example, prepositions are compatible with nouns but

tanwīn
tanwīn

enclitics, to form maximum words, for example:

interrogative particle + conjunction + future particle + [minimum verbal word] + accusative pronoun.

3. AraMorph: Buckwalter Morphologic Analyzer
The Buckwalter Arabic Morphological Analyzer, called AraMorph, was developed in 2002

by Tim Buckwalter, and is one of the most popular engines for morpho-syntactic analysis of the
Arabic language. We will consider here only AraMorph version 1.0, which is available free of charge,
together with its source code.6 The components of AraMorph are the algorithm for morphological
analysis and the data, which consist essentially of three lexicons and three compatibility tables used
for checking the combinations among proclitics, stems and enclitics:

7

8

In addition to the standard encodings,9 many researchers in Natural Language Processing use
an orthographic transliteration.10 For example, the morphological engine AraMorph is based on a
transliteration table11 made by Tim Buckwalter, after whom it is named.12

6 “Buckwalter Arabic Morphological Analyzer Version 1.0” was produced by Linguistic Data Consortium (LDC),
catalog number LDC2002L49 and ISBN 1-58563-257-0. The “Buckwalter Arabic Morphological Analyzer Version 1.0” is
used for POS-tagging Arabic and it is free of charge as a web download distribution (http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC2002L49).

7 Lexicon dictPre#xes is formed by concatenations of proclitics and pre#xes.
8 Lexicon dictSu!xes is formed by concatenations of su!xes and enclitics.
9 The electronic form of digitized Arabic texts undergoes the Unicode standard for character encoding and internal

10 The transcription term denotes an orthography that characterizes the phonology or morpho-phonology of a
language. The transliteration term, instead, use one-to-one orthographical symbols, mapping that customary language.
See: N.Y. Habash, Introduction to Arabic, Natural Language Processing, Morgan & Claypool Publishers, Department
of Computer Science, Toronto 2010, p. 20 (Synthesis Lectures on Human Language Technologies), DOI:10.2200/
S00277ED1V01Y201008HLT010, ISBN: 9781598297966 ebook.

11 See Habash, Introduction to Arabic, Natural Language Processing, p. 20-1: “The Buckwalter transliteration is a trans-
literation system that follows the standard encoding choices made for representing Arabic characters for computers, e.g.,
Unicode. The Buckwalter transliteration has been used in many NLP publications and in resources developed at the Lin-
guistic Data Consortium (LDC). The main advantages of the Buckwalter transliteration are that it is a strict transliteration (i.e.
one-to-one) and that it is written in ASCII characters, i.e., easily reproducible without special fonts”.

12 Buckwalter’s transliteration table can be viewed at the Appendix 1.

Studia graeco-arabica 3 / 2013

198 Ouafae Nahli

The algorithm for morphologic analysis and Part-of-Speech (POS) assignment13 is inserted
in the AraMorph code and enables tokenization, word segmentation, dictionary consultation,
checking of compatibility, and #nally the analytic report. The code for analysis of the morphology
is contained in a Perl script, mediated through Java, and for each token, it enables a listing of
all the annotations considered as possible solutions, with the assignment of all the diacritical

segment.
Even though AraMorph is widely acknowledged as the best analyzer for the Arabic language, it

has some weak points.14 We have tried to identify and solve them, in order to optimize the results.

4. Limits of AraMorph and solutions adopted
a. Dilemma of the normalization of Arabic script

The problem arises because of the lack of consistency in the use of diacritics. To handle this
problem, common practice in the automatic management of Arabic texts is to normalize the input
text. In fact, AraMorph follows normalization procedures that permit the omission of all the diacritic
symbols present in the text such as vowels, gemination symbols and the hamza symbol. With the
justi#cation that diacritics do not exist in Arabic texts, the analysis is done systematically on a non
diacriticized form,15 for example:

- in Arabic texts it is common to #nd ʾalif-hamza written without a symbol, hence it seems an
ʾalif. Consequently, AraMorph proceeds with the letter ʾalif as if it is also an ʾalif-hamza

- AraMorph does not take into account vowels and gemination symbol when they occur in

consonant body.
This approach generates erroneous segmentations which, in turn, are based on erroneous

orthography. Thus, it has soon become evident that, even if the normalization improves recognition
by solving input variability, the probability of ambiguity increases.16

Table 2, concerning analysis of the orthographic word (transliterated “wAHd”), perfectly
illustrates how the normalization approach adopted by AraMorph generates mistaken segmentations
and wrong analyses.

In Table 2, original AraMorph does not distinguish between the ʾalif (transliterated “A”) and
the hamza (transliterated “>”). Hence, it proposes several solutions for the orthographic word

 (transliterated “wAHd”), as an adjective, as a noun, and as a verb:17 “wAHid” -
“wa>aHad” – “wa>aHad~” - “wa>aHid~” - “wa>aHod” - “wa>aHoda” –

 “wa>aHud~” - “wa>aHid~” - “wa>aH~ada” – “wa>aHad~a”.

13 For the table of the grammar categories see the Appendix 2.
14 M.A. Attia, Handling Arabic Morphological and Syntactic Ambiguity within the LFG Framework with a View to

Machine Translation (Ph.D. Thesis), University of Manchester, Manchester 2008, p. 35-9.
15 T. Buckwalter, “Issues in Arabic Orthography and Morphology Analysis”, in A. Farghaly - K. Megerdoomian (eds.),

Proceedings of the Workshop on Computational Approaches to Arabic Script-based Languages, Association for Computational
Linguistics, Stroudsburg PA 2004, p. 31-4.

16 A. Farghaly - K. Shaalan, “Arabic Natural Language Processing: Challenges and Solutions”, Journal ACM Transac-
tions on Asian Language Information Processing TALIP 8 (2009), p. 1-22 (Doi: 10.1145/1644879.1644881).

17 ADJ: Adjective – PVSUFF_SUBJ: Perfective Verb Su!x _Subject - 3MS: 3rd Masculine Singular.

Studia graeco-arabica 3 / 2013

 Computational contributions for Arabic language processing 199

Tab. 2. Analysis output of the orthographic word transliterated “wAHd” by original AraMorph.

wAHd ADJ → wAHid=ADJ+
 wAHd NOUN → wAHid=NOUN+
 wAHd NOUN → wa=CONJ+>aHad=NOUN+
 wAHd NOUN → wa=CONJ+>aHad~=NOUN+
 wAHd NOUN_PROP → wa=CONJ+>aHad=NOUN_PROP+
 wAHd VERB_IMPERFECT → wa=CONJ+>a=IV1S+Hid~=VERB_IMPERFECT+
 wAHd VERB_IMPERFECT → wa=CONJ+>a=IV1S+Hod=VERB_IMPERFECT+
 wAHd VERB_IMPERFECT → wa=CONJ+>a=IV1S+Hoda=VERB_IMPERFECT+
 wAHd VERB_IMPERFECT → wa=CONJ+>a=IV1S+Hud~=VERB_IMPERFECT+
 wAHd VERB_IMPERFECT → wa=CONJ+>u=IV1S+Hid~=VERB_IMPERFECT+
 wAHd VERB_PERFECT → wa=CONJ+>aH~ad=VERB_PERFECT+a=PVSUFF_SUBJ:3MS+
 wAHd VERB_PERFECT → wa=CONJ+>aHad~=VERB_PERFECT+a=PVSUFF_SUBJ:3MS+

By contrast, the upgraded system takes vowels and other symbols into account when they occur
in the text. The proposed solutions are validated by the “AraMorph Vocalic Filter” component,
developed by Federico Boschetti, which (i) assesses the compatibility of the vowel structure of the

disable the formalized rules using regular expressions in order to check the orthography of hamza
and the digitization of other diacritics. The following table illustrates a regular expression aimed at
controlling the orthography of hamza.

Tab. 3. Example of a regular expression.

Regular expression Allowed Not allowed

([>]) [>A] hamza (transliterated “>”) can
be written also as

ʾalif (transliterated “A”)

hamza “>” cannot be changed
into ʾalif “A”

Table 4 shows the results of analysis of the orthographic word “wAHd” when the regular expression
hamza with the ʾalif in the proposed solutions. At the

same time, these solutions are #ltered by the “AraMorph Vocalic Filter” system which compares them with
the form occurring in the text. Hence, all the proposed solutions containing the hamza are eliminated and
eventually, only one solution is accepted: /wāḥid/ “wAHid”, that can be either a name or an adjective.

Tab. 4. Analysis output of the word “wAHd” using the improved engine.

 wAHd ADJ @@@→ wAHid=ADJ+
 wAHd NOUN @@@→ wAHid=NOUN+
 wAHd NOUN ###→ wa=CONJ+>aHad=NOUN+
 wAHd NOUN ###→ wa=CONJ+>aHad~=NOUN+
 wAHd NOUN_PROP ###→ wa=CONJ+>aHad=NOUN_PROP+
 wAHd VERB_IMPERFECT ###→ wa=CONJ+>a=IV1S+Hid~=VERB_IMPERFECT+
 wAHd VERB_IMPERFECT ###→ wa=CONJ+>a=IV1S+Hod=VERB_IMPERFECT+

Studia graeco-arabica 3 / 2013

200 Ouafae Nahli

 wAHd VERB_IMPERFECT ###→ wa=CONJ+>a=IV1S+Hoda=VERB_IMPERFECT+
 wAHd VERB_IMPERFECT ###→ wa=CONJ+>a=IV1S+Hud~=VERB_IMPERFECT+
 wAHd VERB_IMPERFECT ###→ wa=CONJ+>u=IV1S+Hid~=VERB_IMPERFECT+
 wAHd VERB_PERFECT ###→ wa=CONJ+>aH~ad=VERB_PERFECT+a=PVSUFF_SUBJ:3MS+
 wAHd VERB_PERFECT ###→ wa=CONJ+>aHad~=VERB_PERFECT+a=PVSUFF_SUBJ:3MS+

b. Updating of lexicons
Other de#ciencies of analysis are due to the insu!ciency of AraMorph dictionaries. Analysis of

the word /kitāb/ (transliterated “kitAb”) in Table 5 shows some of these weaknesses.

Tab. 5. Analysis output of the word (transliterated “kitAb”) by the original AraMorph.

 kitAb NOUN kitAb=NOUN+
 kitAb NOUN kut~Ab=NOUN+

 >kitAb POS:??? VOC:???MORPH:???

In Table 5, original AraMorph does not take into account the vowel /i/ that appears in word
 (kitAb) and suggests two solutions /kitāb/ “book” (transliterated “kitAb”) and

/kuttāb/ “authors” (transliterated “kut~Ab”). Furthermore, it does not specify syntactic cases.
Even the interrogative particle at the beginning of the same name /ʾakitāb/ (transliterated
“>akitAb”) is not recognized and its analysis gives no results. In order to make up for some AraMorph
weaknesses, it has been necessary to proceed with the creation of new grammatical categories (POS)
and with the updating of lexicons and compatibility tables, for example:

After this upgrade of the system, analysis of the same word in Table 6 is more complete. The system
takes into account the extant vowel and proposes the correct solution /kitāb/ “book” with all
grammatical cases.18 The interrogative particle is recognized, the analysis of the noun () that
follows it proceeds according to compatibility charts (for example, the interrogative particle is not
compatible with the genitive case).

Fig. 6. Analysis output after addition of the interrogative particle and declension cases.

 kitAb NOUN kitAb=NOUN+a=CASE_DEF_ACC+
 kitAb NOUN kitAb=NOUN+i=CASE_DEF_GEN+
 kitAb NOUN kitAb=NOUN+K=CASE_INDEF_GEN+
 kitAb NOUN kitAb=NOUN+N=CASE_INDEF_NOM+
 kitAb NOUN kitAb=NOUN+u=CASE_DEF_NOM+

 >kitAb NOUN >a=INTER+kitAb=NOUN+a=CASE_DEF_ACC+
 >kitAb NOUN >a=INTER+kitAb=NOUN+N=CASE_INDEF_NOM+
 >kitAb NOUN >a=INTER+kitAb=NOUN+u=CASE_DEF_NOM+

18 DEF: De#nite, INDEF: Inde#nite, ACC: Accusative, GEN: Genitive, NOM: Nominative, INTER: Interrogative particle.

Studia graeco-arabica 3 / 2013

 Computational contributions for Arabic language processing 201

Weak verbs are verbs whose roots contain one or more letters yāʾ or/and wāw, for example, /
rajā/ “he hoped” (from the root rjw), /bakā/ “he planted” (from the root bky) and /laqiya/
“he encountered” (from the root lqy). These verbs can lose the letter yāʾ or wāw in the conjugation,
for example in jussive mood: /yalqa/ (transliterated “yaloqa”), /yabki/ (transliterated
“yaboki”) and /yarju/ (transliterated “yaroju”).

In the original AraMorph, weak verbal lemmas have been grouped with the same grammatical
label. Table 7 is an illustration of jussive mood analysis of these verbs by the original AraMorph.19

Tab. 7. In the output, the analyses specify that verbs are imperfect with no other indications.

 ylqa VERB_IMPERFECT ya=IV3MS+loqa=VERB_IMPERFECT+
 ybki VERB_IMPERFECT ya=IV3MS+bok=VERB_IMPERFECT+

 yrju VERB_IMPERFECT ya=IV3MS+roj=VERB_IMPERFECT+

When the proposed analyses are #ltered by the component “AraMorph Filter vowel”, which
compares them with the attested forms, some suggestions are rejected (Tab. 8).

Tab. 8. Validation of proposed analyses by “AraMorph Filter vowel”.

 ylqa VERB_IMPERFECT @@@→yaloqa SI: ya=IV3MS+loqa=VERB_IMPERFECT+
 ybki VERB_IMPERFECT ###→ yabok NO: ya=IV3MS+bok=VERB_IMPERFECT+

 yrju VERB_IMPERFECT ###→ yaroj NO: ya=IV3MS+roj=VERB_IMPERFECT+

In Table 8, we can see that the proposed analysis of the verb /yalqa/ is accepted because it
contains the #nal vowel. Instead, for the verbs /yabki/ and /yarju/, the proposed analyses
are rejected because they do not contain the #nal vowel which is missing in the dictionaries. This
implies the addition of new su!xes and $exion codes, and further updating of compatibility tables.
Therefore the analysis of weak verbs is better de#ned in Table 9.20

Tab. 9. Analysis output of weak verbs obtained with improved tool.

 ylqa VERB_IMPERFECT @@@→yaloqa SI: ya=IV3MS+loq=VERB_IMPERFECT+a=IVSUFF_MODD:JS+

 ybki VERB_IMPERFECT @@@→yaboki SI: ya=IV3MS+bok=VERB_IMPERFECT+i=IVSUFF_MOOD:JS+
 ybki VERB_IMPERFECT @@@→yuboki SI: yu=IV3MS+bok=VERB_IMPERFECT+i=IVSUFF_MOOD:JS+

 yrju VERB_IMPERFECT @@@→yaroju SI: ya=IV3MS+roj=VERB_IMPERFECT+u=IVSUFF_MOOD:JS+

multiple entries for the same lemma which has the same $exion code. For example, the lemma /wāḥid/

19 IV3MS: Imperfective verb, 3rd person masculine singular.
20 IV3MS: Imperfective verb, 3rd person masculine singular, IVSUFF_MOOD:JS (Imperfective verb su!x - Jussive

mood).

Studia graeco-arabica 3 / 2013

202 Ouafae Nahli

21
See its analysis in Table 10: the original engine o"ers #ve declination cases for both the adjective and the name.

Tab. 10. Increase of the proposed solutions caused by di"erent entries of the same lemma.

 wAHd ADJ @@@→wAHida wAHid=ADJ+ a=CASE_DEF_ACC+
 wAHd ADJ @@@→wAHidi wAHid=ADJ+ i=CASE_DEF_GEN+
 wAHd ADJ @@@→wAHidK wAHid=ADJ+ K=CASE_INDEF_GEN+
 wAHd ADJ @@@→wAHidN wAHid=ADJ+ N=CASE_INDEF_NOM+
 wAHd ADJ @@@→wAHidu wAHid=ADJ+ u=CASE_DEF_NOM+
 wAHd NOUN @@@→wAHida wAHid=NOUN+ a=CASE_DEF_ACC+
 wAHd NOUN @@@→wAHidi wAHid=NOUN+ i=CASE_DEF_GEN+
 wAHd NOUN @@@→wAHidK wAHid=NOUN+ K=CASE_INDEF_GEN+
 wAHd NOUN @@@→wAHidN wAHid=NOUN+ N=CASE_INDEF_NOM+
 wAHd NOUN @@@→wAHidu wAHid=NOUN+ u=CASE_DEF_NOM+

In the updated system, for the same lemma which has the same $exion code, the multiple entries
are traced back to a single entry with a unique POS, which indicates that the lemma can be either
a noun or an adjective. Consequently, in Table 11, there are less analyses which are suggested.
Therefore, in the #rst step, morphological and syntactical analysis is accomplished more quickly. The
disambiguation of the word (adjective or name) will follow according to the context in a next step.

Tab. 11. The grammatical category (ADJ-NOUN) indicates that the word can be either an adjective or a
noun.

 wAHd ADJ-NOUN @@@→wAHida wAHid=ADJ-NOUN+a=CASE_DEF_ACC+
 wAHd ADJ-NOUN @@@→wAHidi wAHid=ADJ-NOUN+i=CASE_DEF_GEN+
 wAHd ADJ-NOUN @@@→wAHidK wAHid=ADJ-NOUN+K=CASE_INDEF_GEN+
 wAHd ADJ-NOUN @@@→wAHidN wAHid=ADJ-NOUN+N=CASE_INDEF_NOM+
 wAHd ADJ-NOUN @@@→wAHidu wAHid=ADJ-NOUN+u=CASE_DEF_NOM+

c. First results
Within the context of the project Greek into Arabic, we started to test our upgrade of AraMorph

by analyzing the text edited by ʿA. Badawī (1955 and 1966), namely the Arabic version of parts of
Plotinus’ Enneads.22 The morphological engine has found that the entire text is composed of 60253
words related to 9503 orthographic forms. AraMorph in its original version failed to recognize 832
orthographic forms (NOT FOUND) and o"ered 27166 analyses for the forms recognized (i.e. 8671
forms). After the upgrade, the engine recognizes all the forms represented in the entire text, but it
proposes 55497 analyses. These results are the consequence of two linguistic phenomena.

First, many (if not all) words are ambiguous, since they do not contain all the vowels and
consequently they can be related to various lemmas. Second, the insertion of all the cases of nominal
declension and verbal in$ection increases the solutions proposed by the engine. Therefore, the
system generates more than one analysis for every single form.

21 The code N-ap allows all in$exions except for the plural masculine.
22 ʿA. Badawī, A&ūṭīn ʿinda l-ʿArab, Dār al-Nahḍat al-ʿarabiyya, Cairo 1955, 1966.

Studia graeco-arabica 3 / 2013

 Computational contributions for Arabic language processing 203

Let us consider the following sentence (p. 58.13-14 Badawī):

Perhaps the object whose image and skills the art wants to copy - it #nds it incomplete.

The orthographic form (transliterated “wjdth”) corresponds to “it #nds it” in the context
of the above mentioned sentence, but it is a un-vocalized form and could indicate several meanings
in di"erent contests. As shown in Table 12, in fact, the above mentioned orthographic form could be
linked to di"erent lemmas.23 Moreover, the engine proposes cases of declination for every nominal
lemma, and in$ected forms for every verbal lemma.

Tab. 12. Output analyses of the orthographic form “wjdth”.

 wjdth NOUN→ wa=CONJ+jad~=NOUN+ap=NSUFF_FEM_SG+a=CASE_DEF_ACC+hu=POSS_PRON_3MS+
 wjdth NOUN→ wa=CONJ+jad~=NOUN+ap=NSUFF_FEM_SG+i=CASE_DEF_GEN+hu=POSS_PRON_3MS+
 wjdth NOUN→ wa=CONJ+jad~=NOUN+ap=NSUFF_FEM_SG+u=CASE_DEF_NOM+hu=POSS_PRON_3MS+

 wjdth NOUN→ wa=CONJ+jid~=NOUN+ap=NSUFF_FEM_SG+a=CASE_DEF_ACC+hu=POSS_PRON_3MS+
 wjdth NOUN→ wa=CONJ+jid~=NOUN+ap=NSUFF_FEM_SG+i=CASE_DEF_GEN+hu=POSS_PRON_3MS+
 wjdth NOUN→ wa=CONJ+jid~=NOUN+ap=NSUFF_FEM_SG+u=CASE_DEF_NOM+hu=POSS_PRON_3MS+

 wjdth VERB_PERFECT→ wa=CONJ+jad=VERB_PERFECT+ato=PVSUFF_SUBJ:3FS+hu=PVSUFF_DO:3MS+

 wjdth VERB_PERFECT→ wajad=VERB_PERFECT+ato=PVSUFF_SUBJ:3FS+hu=PVSUFF_DO:3MS+
 wjdth VERB_PERFECT→ wajad=VERB_PERFECT+ota=PVSUFF_SUBJ:2MS+hu=PVSUFF_DO:3MS+
 wjdth VERB_PERFECT→ wajad=VERB_PERFECT+oti=PVSUFF_SUBJ:2FS+hu=PVSUFF_DO:3MS+
 wjdth VERB_PERFECT→ wajad=VERB_PERFECT+otu=PVSUFF_SUBJ:1S+hu=PVSUFF_DO:3MS+

 wjdth VERB_PERFECT→ wa=CONJ+jud=VERB_PERFECT+ota=PVSUFF_SUBJ:2MS+hu=PVSUFF_DO:3MS+
 wjdth VERB_PERFECT→ wa=CONJ+jud=VERB_PERFECT+oti=PVSUFF_SUBJ:2FS+hu=PVSUFF_DO:3MS+
 wjdth VERB_PERFECT→ wa=CONJ+jud=VERB_PERFECT+otu=PVSUFF_SUBJ:1S+hu=PVSUFF_DO:3MS+

Analysis of the orthographic form (transliterated “wjdth”) in Table 12 illustrates the
typical example of Arabic ambiguity and the di!culty of its automatic analysis. Ambiguity is an
important problem that any automated analysis procedure must face. It would be possible to analyze
all the proposed alternatives for the orthographic form (transliterated “wjdth”) in Figure 10
(and the 55497 proposed alternatives for the entire text), but we have found more e"ective to
proceed progressively step by step.

At a #rst level of analysis, the program is able to deactivate the nominal declension and the verbal
in$exion when it is expressed with a vowel. Therefore the approach in Table 13 begins by establishing
the exact lemma to which the orthographic form (transliterated “wjdth”) is associated and

23 -

st Person singu-
nd nd rd person feminine singular.

Studia graeco-arabica 3 / 2013

204 Ouafae Nahli

by eliminating the wrong lemmas proposed. Therefore the orthographic word (transliterated
“wjdth”) is associated to the lemma /wajada/ “has found”.

Tab. 13. Determining the exact lemma for the attested form.

NO wjdth NOUN →wa=CONJ+jad~=NOUN+ap=NSUFF_FEM_SG+hu=POSS_PRON_3MS+
NO wjdth NOUN →wa=CONJ+jid~=NOUN+ap=NSUFF_FEM_SG+hu=POSS_PRON_3MS+
NO wjdth VERB_PERFECT →wa=CONJ+jad=VERB_PERFECT+t=PVSUFF_SUBJ+hu=PVSUFF_DO:3MS+
YES wjdth VERB_PERFECT →wajad=VERB_PERFECT+t=PVSUFF_SUBJ+hu=PVSUFF_DO:3MS+
NO wjdth VERB_PERFECT →wa=CONJ+jud=VERB_PERFECT+t=PVSUFF_SUBJ

Thus, the engine proposes for the entire text 22529 morphological analyses which show the possible
lemmas for every orthographic form.24 At this point, we narrow our focus on linking the attested form
to the exact lemma. Having established the lemma corresponding to the form, the declension of that
lemma is allowed, in the next step, for the syntactic study. In Table 14, the orthographic word
“wjdth” is related to the lemma /wajada/ “has found”, 3rd person singular feminine.

Tab. 14. Determining the exact in$ected form for the attested form.

YES wjdth VERB_PERFECT →wajad=VERB_PERFECT+ato=PVSUFF_SUBJ:3FS+hu=PVSUFF_DO:3MS+
NO wjdth VERB_PERFECT →wajad=VERB_PERFECT+ota=PVSUFF_SUBJ:2MS+hu=PVSUFF_DO:3MS+
NO wjdth VERB_PERFECT →wajad=VERB_PERFECT+oti=PVSUFF_SUBJ:2FS+hu=PVSUFF_DO:3MS+
NO wjdth VERB_PERFECT →wajad=VERB_PERFECT+otu=PVSUFF_SUBJ:1S+hu=PVSUFF_DO:3MS+

5. Conclusion
This paper has presented an adaptation and improvement of the extant techniques of

morphological analysis. Using AraMorph, which is an open-source software, we have focused our
attention on sharpening lexicons and compatibility tables to solve cases of morphological ambiguity.

Even when the dictionaries of a!xes (dictPre#xes and dictSu!xes) and compatibility tables
are implemented to become complete, AraMorph does not support the processes of generation

new entries. The new lemmas must be manually entered, with all the possible stems that permit
the in$ection. Therefore in order to compile the dictionary of lexical words (dictStems) a time-
consuming process is needed, because the dictionary is an open class. A lexical coverage as wide as
possible (even if completeness cannot actually be achieved) is highly desirable, because the #rst task

the task fails. To work around this limitation, procedures for automatic extraction from the Arabic
lexicographic encyclopaedia Lisān al-ʿarab25 have been designed. These procedures are illustrated in
the second part of this paper. The results of the extraction process can be used to enrich automatically
the dictionary of stems (dictStems) in AraMorph.

24 This result (i.e. 22529 analyses for 9503 attested forms in the text) is comparable with the result obtained by the origi-
nal AraMorph that proceeds without taking into account the #nal vowels (i.e. 27166 analyses only for 8671 attested forms).

25 The Lisān al-ʿArab () is among the best known complete Arabic dictionaries and was compiled by
Ibn Manẓūr in 1290. See Ibn Manẓūr, Lisān al-ʿarab, Dār al-kutub al-ʿilmiyya, Beirut 2005.

Studia graeco-arabica 3 / 2013

 Computational contributions for Arabic language processing 205

Appendix 1. Buckwalter’s transliteration table
Arabic
letter

phonetic
transcription

Buckwalter’s
transliteration

Arabic
letter

phonetic
transcription

Buckwalter’s
transliteration

ʾ ʾ ṭ T

ʾ > ẓ Z

ʾ < ʿ E

ʾ & ġ g

ʾ } f f

ʾā | q q

ā A k k

ā Y l l

b b m m

t t n n

t p h h

ṯ v w w

ǧ j y y

ḥ H fatḥa a a

ḫ x ḍamma u u

d d kasra i i

ḏ * Tanwīn fatḥa /an/ F

r r Tanwīn ḍamma /un/ N

z z Tanwīn kasra /in/ K

s s Gemination symbol ~
š $ sukūn o

ṣ D

ḍ T

Studia graeco-arabica 3 / 2013

206 Ouafae Nahli

Appendix 2. Grammatical categories (Parts of Speech)

Grammatical categories used by original AraMorph can be seen at:
http://www.nongnu.org/AraMorph/english/grammatical_categories.html
In addition to the grammatical categories used by the original AraMorph, we have created new

categories for better analysis of the Arabic language. Some of the new categories used in this article
can be seen below:

INTER Interrogative particle

PVSUFF_SUBJ:3FS Perfective verb su!x_Subject: 3rd person feminine singular
PVSUFF_SUBJ:2FS Perfective verb su!x_Subject: 2nd person feminine singular
PVSUFF_SUBJ:2MS Perfective verb su!x_Subject: 2nd person masculine singular
PVSUFF_SUBJ:1S Perfective verb su!x_Subject: 1st person singular.

IVSUFF_MOOD:I Imperfective Verb Su!x - Indicative mode
IVSUFF_MOOD:JS Imperfective Verb Su!x - jussive mode
IVSUFF_MOOD:JS Imperfective Verb Su!x - subjunctive mode

CASE_DEF_ACC Accusative Case – De#nite Noun
CASE_DEF_GEN Genitive Case – De#nite Noun
CASE_DEF_NOM Nominative Case – De#nite Noun

ACC_INDEF_ACC Accusative Case – Inde#nite Noun
CASE_INDEF_GEN Genitive Case – Inde#nite Noun
CASE_INDEF_NOM Nominative Case – Inde#nite Noun

Finito di stampare nel mese di Giugno 2012
presso le Industrie Gra!che della Pacini Editore S.p.A.

www.pacinieditore.it

Finito di stampare nel mese di settembre 2013
presso le Industrie Gra#che della Pacini Editore S.p.A.

www.pacinieditore. it

